Exercise 51

Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
y=\frac{x^{3}-x}{x^{2}-6 x+5}
$$

Solution

Calculate the limits as $x \rightarrow \pm \infty$ to determine the horizontal asymptote. In the second limit, make the substitution, $x=-u$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{3}-x}{x^{2}-6 x+5} & =\lim _{x \rightarrow \infty} \frac{x-\frac{1}{x}}{1-\frac{6}{x}+\frac{5}{x^{2}}}=\frac{\lim _{x \rightarrow \infty} x-0}{1-0}=\frac{\infty}{1}=\infty \\
\lim _{x \rightarrow-\infty} \frac{x^{3}-x}{x^{2}-6 x+5} & =\lim _{u \rightarrow \infty} \frac{(-u)^{3}-(-u)}{(-u)^{2}-6(-u)+5} \\
& =\lim _{u \rightarrow \infty} \frac{-u^{3}+u}{u^{2}+6 u+5} \\
& =\lim _{u \rightarrow \infty} \frac{-u+\frac{1}{u}}{1+\frac{6}{u}+\frac{5}{u^{2}}} \\
& =\frac{\lim _{u \rightarrow \infty}(-u)+0}{1+0+0} \\
& =\frac{-\infty}{1}=-\infty
\end{aligned}
$$

Since neither of these limits are finite, there are no horizontal asymptotes. Rather, there's an oblique asymptote $y=\frac{x^{3}}{x^{2}}=x$. The vertical asymptotes are found by setting what's in the denominator equal to zero and solving for x.

$$
\begin{gathered}
x^{2}-6 x+5=0 \\
(x-5)(x-1)=0 \\
x=5 \quad \text { or } \quad x=1
\end{gathered}
$$

However, because the $x-1$ factor cancels when the function is simplified,

$$
\begin{aligned}
y & =\frac{x^{3}-x}{x^{2}-6 x+5} \\
& =\frac{x\left(x^{2}-1\right)}{(x-5)(x-1)} \\
& =\frac{x(x+1)(x-1)}{(x-5)(x-1)} \\
& =\frac{x(x+1)}{x-5},
\end{aligned}
$$

there's a hole in the graph at $x=1$ rather than a vertical asymptote there.

The zoomed in graph below illustrates the hole at $x=1$.

The zoomed out graph below illustrates the asymptotes.

